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Maintaining safe operating spaces for exploited natural systems
in the face of uncertainty is a key sustainability challenge. This
challenge can be viewed as a problem in which human society
must navigate in a limited space of acceptable futures in which
humans enjoy sufficient well-being and avoid crossing planetary
boundaries. A critical obstacle is the nature of society as a con-
troller with endogenous dynamics affected by knowledge, values,
and decision-making fallacies. We outline an approach for ana-
lyzing the role of knowledge infrastructure in maintaining safe
operating spaces. Using a classic natural resource problem as an
illustration, we find that a small safe operating space exists that is
insensitive to the type of policy implementation, while in general,
a larger safe operating space exists which is dependent on the
implementation of the “right” policy. Our analysis suggests the
importance of considering societal response dynamics to varying
policy instruments in defining the shape of safe operating spaces.

safe operating space | resource management | knowledge infrastructure |
uncertainty | social–ecological systems

As the impact of human activities continues to increase in
scale and intensity, so does the need for effective environ-

mental policy. Effective policy in this context of dynamically
evolving systems must rely on iterative feedback processes that
guide a collection of system characteristics (e.g., human well-
being, atmospheric CO2 concentration, or fish biomass) toward
desirable levels. At a minimum, effective policies require (i)
the capacity to measure system characteristics, (ii) mechanisms
to translate such measurements into actions, and (iii) knowl-
edge of how such actions affect the target system. Ideally, any
social objective can be achieved within the constraints of a given
biophysical system if these three conditions are met. For most
environmental problems, however, measurement is imperfect
and costly; knowledge of how actions impact nonlinear, open
ecological and environmental systems is limited; and the trans-
lation of information to action in decentralized decision-making
systems is difficult to predict.

There are many approaches to policy design and analysis
for such less-than-ideal situations that make varying assump-
tions regarding how deviations from the ideal are characterized.
Stochastic optimization approaches common in resource eco-
nomics focus on finding the best policy (element ii) given prob-
abilistic characterizations of imperfect measurement and system
knowledge (elements i and iii) and do not typically address prac-
tical challenges of implementing the best policy. Approaches
in control systems engineering typically make less restrictive
assumptions and focus not on the “best” policy, but on the design
of robust policies to manage systems under a wide range of uncer-
tain circumstances and place more emphasis on the practical chal-
lenges of policy implementation. Interestingly, neither of these
approaches provides theoretical treatments of the question of
how political systems and complex organizations translate infor-
mation into action, a critical issue in the context of real-world
environmental policy, the former because it tends not to treat
such practical issues, and the latter because, for the kinds of prob-

lems it addresses, element ii is, in fact, nearly ideal: Information
is translated into action through a control unit (e.g., an algorithm
executed by a device such as the cruise control unit in one’s car)
designed with a clear goal and whose performance is limited only
by well-understood physical constraints. This is a far cry from envi-
ronmental policy contexts where the goal is contested and the
performance of the “controller” is poorly understood.

This combination of disciplinary interests, methods, and prob-
lem focus leaves a research gap between theory and practice for
environmental policy design problems, which motivates our work
and our use of the term “knowledge infrastructure.” We intend
the term to convey both a sense of the many ways that imperfect
measurement and information get reflected in practical deci-
sion making and that information is processed through complex
“knowledge infrastructure systems” that produce, curate, and
communicate information. Knowledge infrastructure includes
universities, government agencies, communities, media, and
their associated assets composed of people, knowledge itself,
organizational skill, and a host of shared infrastructure (e.g.,
transportation and communication) that undergrids their func-
tion. We suggest that the implications of the size, complexity, and
operation of knowledge infrastructure for environmental pol-
icy deserve more careful consideration. Specifically, knowledge
infrastructure is costly to maintain and can be improved through
investment. Decisions must be made regarding managing these
costs and investments.

Our aim here is to contribute to building some analytical
capacity for the design of knowledge infrastructure systems for
environmental policy with the goal of moving thinking beyond
the narrow interpretation of “policy” as merely a decision-
making recipe toward consideration of the full process of mobi-
lizing knowledge in practice. To set the stage, we briefly review
treatments of knowledge and information in environmental pol-
icy, tracing them through increasing nuance regarding how
knowledge is characterized and how it is applied in practice.
Based on this foundation, we propose a method that merges
ideas from mathematical bioeconomics, control theory, and insti-
tutional analysis. We then present the results of a dynamic math-
ematical model of resource management that explicitly includes
key aspects of knowledge infrastructure. We propose a typology
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of knowledge and use it in concert with the model to analyze the
performance of various strategies for actualizing these knowl-
edge types to manage the safe operating space of an exploited
natural resource system.

A Brief History of Environmental Policy and Knowledge
Infrastructure
To structure our review of the literature, we use concepts from
control systems theory. Specifically, various streams of environ-
mental policy research address different aspects of general feed-
back systems such as in Figs. 1 and 2. Arrows depict information
flows. The blue block represents decision-making processes, i.e.,
the transformation of information into instructions for action,
and can represent anything from a simple physical device such
as a thermostat to a social entity such as a harbor gang, a min-
istry of fisheries and agriculture, or the United Nations. The
orange block represents the biophysical system that translates
incoming instructions (e.g., how many fish to extract, how much
CO2 to emit, or how much effort to invest in canal mainte-
nance) into desired material and information flows. Examples
range from simple physical devices (an air-conditioning unit) to
the entire Earth system. Information about desired flows (output
from the orange block on the right) is compared with (indicated
by the circle and the minus sign) incoming information about a
goal (the desired temperature in your house or concentration of
CO2 in the atmosphere) entering from the left. The difference
(indicated by the minus sign) between information about actual
and desired outcomes (the “error” signal) is fed back into the
decision-making entity. Such information feedback loops, cre-
ated by periodic measurement, iterative decision making, and
instruction updating, are essential for generating any persistent
structure within dynamically evolving systems, e.g., an ecosystem,
a society, or any combination of the two.

Scholars unpack these blocks and arrows in different ways.
Social scientists may focus on the politics of goal setting or
decentralized decision making in the blue block in Figs. 1 and
2. Ecologists, Earth scientists, and engineers may focus on built
and natural systems in the orange block. The term “policy,” nar-
rowly defined, refers to instructions used to translate data into
action. In control theory, environmental policy is equivalent to
a feedback control law for a system involving natural and/or
ecological processes. Various approaches to policy design and
analysis make very different assumptions about these boxes and
information flows. In the remainder of this section, we summa-
rize key insights from some dominant approaches that focus on
this narrow definition of policy to provide a departure point for a
more general design process that considers the knowledge infras-
tructure required to develop, adapt, and deploy the policy over
time in its various aspects throughout the entire system. This
view recognizes aspects of the broader notion of “environmen-
tal governance,” i.e., the complex of interacting infrastructures
that actualize policy.

Natural Resource Management Under Uncertainty. Seminal studies
in this area focused on fisheries (1, 2) but the basic prob-
lem setup places any resource composed of a single stock
(e.g., fish, trees, water) in the biophysical systems block and a
benevolent social planner in the decision-making block (Fig. 1).

di do

dm

Welfare Material
Social planner
optimally alloc−
ates assets

Fisheries,
groundwater,
forests, land

FlowsGoal

Fig. 1. General structure of the natural resource management problem.

The basic intuition for all such studies is that the social plan-
ner, based on perfect understanding of the internal dynamics
of the natural system being managed and how society val-
ues the resource flows, determines a set of instructions for
how much effort should be directed at extracting resources at
each point in time to maximize the benefit of the resource to
society.

Arrows di , do , and dm in Figs. 1 and 2 depict exogenous
drivers that may affect input to, output from, and measure-
ment of the managed system, respectively. Seminal treatments
(1–4) and many subsequent variations set di = do = dm =0 and
analyze general aspects of managing common-pool resources
(CPRs) composed of a single harvestable stock. This analysis
has generated high-level guiding principles for policy design but
they are less valuable in practice. Many subsequent studies have
explored the implications of di = do = dm 6=0. For example, ref.
5 explores the value of stock assessment in light of imperfect
knowledge of the stock size (dm 6=0). Others have considered
measurement uncertainty in both stock and recruitment (6) and
its effects on optimal harvest strategies (7). Yet others have
focused on uncertainty regarding how fishers determine where
and when to fish (8–10). Others have explored policy under mul-
tiple sources of uncertainty (11) and yet others have derived
general principles for policy choice, e.g., landing fees vs. quo-
tas, for a specific uncertain dynamic resource (12). Note that
this same basic model setup can and has been easily extended
to address climate policy questions by choosing the atmosphere
as the single-stock CPR of interest (13).

A key feature of these studies and their many variations is
the rather restrictive probabilistic characterization of uncertainty
upon which they rely. As an alternative, some have suggested the
“precautionary principle” (14) which shifts attention away from
optimal path-based management given specific uncertainties to
what we might call “structural” management where policy inter-
vention focuses on modification of the internal dynamics of the
system being managed. Marine reserves are prominent examples
of this approach.

Sensitivity-Based Perspectives. In the absence of probabilistic
knowledge of di , do , and dm , policy design may take the form
of reducing the sensitivity of the system to variation in unknown
quantities. From this approach, based on mathematical analy-
sis of feedback control systems, comes a guiding principle akin
to the precautionary principle mentioned above: “fragility” is
conserved (15, 16). Policy designs that reduce sensitivity to a par-
ticular class of disturbances (e.g., high frequency) will necessarily
increase sensitivity (fragility) to others (e.g., low frequency). This
is the so-called waterbed effect: Suppressing one class of dis-
turbances causes new vulnerabilities to pop up somewhere else.
These so-called robustness–fragility trade-offs (RFTOs) must be
addressed in the design of feedback control systems. Applica-
tion of the RFTO perspective to the standard natural resource
management model (17, 18) where the structure of the sys-
tem is assumed known but none of the six relevant parameters
(see Materials and Methods for details) are known illustrates a
RFTO between “economic” and “biophysical” parameters. For
example, policies that reduce sensitivity to uncertainty about the
resource growth rate and carrying capacity increase sensitivity to
variation in price, harvestability, and cost.

The notion of knowledge infrastructure is more natural in
this view of policy design. Navigating RFTOs involves (i) decid-
ing which uncertainties to address with a feedback policy, (ii)
identifying potential fragilities thus created, and (iii) allocating
resources to manage i and ii such as to reduce uncertainties
(directly addressed, associated with emergent fragilities, or both)
or managing emergent fragilities directly. That is, knowledge
infrastructure is deployed on a number of interrelated fronts
involving measuring, learning, deciding, and acting. In fact, even
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Fig. 2. The real-world policy problem. Rather than a single (or relatively simple) goal or “set point” in typical feedback control problems, the goal is to
keep the planetary system in the multidimensional SOS inside the outer boundary of the octagon and outside of the space in which society does not meet
minimum welfare goals.

though it treats multiple uncertainties, the RFTO analysis just
discussed captures very little of the full uncertainty associated
with actual human–environment systems such as how individual
cognition and decision making feed into collective decision-
making contexts (e.g., how people respond to policy interven-
tions) and uncertainty about ecological/environmental dynamics.
We now turn our attention to work that unpacks these two
sources of uncertainty as support for the knowledge and actor
typologies we propose.

Empirical Perspectives. The view of environmental policy in Fig. 1
involves relatively restrictive representations of human behavior
and ecology. Real-world environmental policy feedback systems
are more accurately depicted in Fig. 2. Here, the manage-
ment objective is complex, represented as an annulus between
minimum biophysical needs and maximum biophysical limits.
Generating human welfare within a set of technological con-
straints requires a minimum biophysical foundation (inner green
octagon, Fig. 2). Planetary system function puts a limit on
tolerable impacts (outer green octagon, Fig. 2). The safe oper-
ating space (SOS) is the annulus between the outer planetary
boundary (19) and the inner social boundary (20). Increasing
population and per capita demands puts outward pressure on the
social boundary. Complex, poorly understood feedbacks between
planetary boundary elements decrease the size of the planetary
boundary. Together, these processes shrink the size of the SOS.
The global-level governance objective is then to keep the coupled
social–planetary system within the SOS.

Fig. 2 illustrates this complex welfare goal acting as the set
point for the policy control loop. Other new challenges follow:
The size and definition (i.e., the goal) of the SOS are con-
tested, creating delays in the feedback system; the omniscient
social planner is replaced by decentralized decision makers; and
the simple resource system is replaced with an extraordinarily
complex one. This diagram highlights how empirical realities
from studies of ecological systems and human behavior play
into environmental policy, shifting the narrative from resource
management under uncertainty to managing for resilience in
social–ecological systems. This narrative highlights at least two
challenges. First, translating measurements to action requires
an internal model of how the target system functions. Human
behavior deeply complicates this translation because the basis
(beliefs, values, epistemologies) of internal models varies across
actors (21). Conflicts between these internal models can slow
or completely stop action in deliberative democratic decision-

making systems (22). Variation in human behavior prevents
convergence to a single “rationality” required for effective feed-
back control. Second, nonlinearity and complexity of ecological
systems give rise to the potential for multiple regimes, difficult to
measure tipping points, and rapid movement between regimes.
These factors make the policy problem much more difficult.

Deviations from the homo economicus representation of
human behavior in policy design have been the subject of
intense investigation in recent decades. This work ranges from
Kahneman and Tversky’s (23) work on the inconsistency between
human decision making and the expected utility model to exper-
imental work revealing altruistic behavior and conditional coop-
eration in social dilemmas (24) to very recent calls to treat
humans as enculturated actors whose behavior is, at least in
part, socially determined (25). If humans behaved as atomistic
information-processing algorithms, design of robust feedback
policies would be much easier. The fact that this is not the case
has major implications for policy design. Again, we have men-
tioned only a few of a very large number of studies, but the
main implication for our discussion is that the control unit has its
own endogenous dynamics that cause its function to change over
time! Not having a fixed, predictable control unit makes policy
design extremely difficult.

Similarly, work on regime shifts in ecological systems has
significantly impacted thinking in environmental policy. If the
ecological system is well understood, regime shifts do not present
fundamentally new problems for policy design. In practice,
system understanding is limited so the location of tipping points
between regimes is typically not known. Under these circum-
stances, ref. 26 showed that the possibility of regime shifts
induces maintenance of higher resource stock levels for optimal
management (more precautionary). Subsequent work building
on ref. 26 that generalizes the utility and resource growth func-
tions shows that potential regime shifts may make the optimal
policy more precautionary (risk avoidance of lost future har-
vest) or more aggressive (low postregime shift harvest reduces
the resource asset value, suggesting liquidation of the resource
and investment elsewhere) (27). This is a generalization of
Clark’s (2) analysis of the economics of overexploitation showing
that resource growth rate determines optimality of conservation
or liquidation of the resource. Potential regime shifts increase
or decrease the “effective” growth rate. Several other studies
analyze the optimal management of natural resources in the
presence of thresholds, e.g., refs. 28 and 29. Optimality, however,
often depends on subtle details of the model. Thus, although we

Anderies et al. PNAS | March 19, 2019 | vol. 116 | no. 12 | 5279
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Fig. 3. Extension of the standard bioeconomic model of a renewable
resource. See Materials and Methods for full mathematical details.

get some general insights, the policy prescriptions that flow from
this work are of limited practical value.

This last point is the point of departure for our analysis. Rather
than seek optimal policy prescriptions for narrowly defined feed-
back systems that do not consider practical implementation
challenges, we ask how we might invest in knowledge infras-
tructure systems for the messy world of Fig. 2. Our work builds
on ref. 30, which integrates notions of RFTOs (18, 31) and
the SOS (19) to explore how a particular management strategy
(short-term variance reduction) affects the SOS of several dif-
ferent exploited ecosystems. Here we focus on one ecosystem
type, but explore a range of strategies involving different uses
of knowledge infrastructure.

Modeling Knowledge Infrastructure Mobilization in
Environmental Management
To ground the mathematical model, consider riding a bicycle—
so familiar that we lose sight of the ubiquity and complexity of
feedback control problems. The coupled rider–bicycle unit is the
biophysical system (orange block, Fig. 2). The rider (controller)
senses (tan block, Fig. 2) tilt, direction, and forces and trans-
lates these measurements into action (blue block, Fig. 2) through
the handlebar (relative orientation of front and rear wheels) and
body position relative to the bicycle. Based on experience (an
informal time-series analysis), the rider has developed an inter-
nal model of how the relative angles of front and rear wheels and
body position change tilt, direction, and forces which is used to
keep the bicycle in the SOS (upright). Once in the SOS, the rider
can implement a goal such as traversing a distance as quickly
as possible or leisurely reaching a destination. Increasing per-
formance for speed (e.g., very narrow tires, frame geometry for
quick response) may decreases the SOS. Even though humans
can handle this task quite easily once learned, building a robotic
controller for this task is nontrivial. Imagine now the difficulty
of riding a tandem bicycle while blindfolded over a very bumpy
road where both riders can steer. This is much closer to the actual
environmental management problems we aim to solve.

Building on refs. 30 and 32, we present a modeling framework
that provides an initial step toward thinking systematically about
knowledge infrastructure and managing the SOS with different
types of knowledge gaps. To connect the framework with the
existing literature, we extend the standard bioeconomic model.
Fig. 3 shows our extension mapped onto the standard control
system diagram in which x (t) is the biomass of a single stock and
e(t), the policy variable, is appropriation effort. The biophysi-
cal system dynamics are a simple mass balance between natural
growth and harvest as determined by x (t) and e(t). The function
U (t) is a stochastic process (e.g., white noise) that exogenously
drives the system. We incorporate the potential for regime shifts
through a feature of the standard model referred to as critical
depensation, the existence of a minimum population level below
which the population cannot recover, which we call α. We
assume that the harvest increases linearly with effort and stock
biomass as in the standard model.

We extend this standard model in two ways. First, we replace
the idealized decision making of a social planner with one that
makes explicit the multiple ways knowledge plays into deci-
sion making shown in Fig. 5. Second, we replace maximizing a
weighted sum of welfare over a time path with keeping x (t) and
e(t) in a SOS. In the following sections, we define the SOS, for-

malize the notion of knowledge infrastructure as elements in the
space of combinations of strategies (manager types) and knowl-
edge types, and analyze the model to sketch out a more systematic
approach to studying practical environmental policy design.

Defining the SOS. The notion of “SOS” prioritizes finding regions
in state space which allow safe negotiation of welfare goals. The
management problem can also be viewed with these priorities
reversed, focusing on finding the welfare-maximizing path while
remaining in the SOS. While the mathematics for both views are
similar in many respects, the narrative produced by the analyses
is subtly different. The latter requires a clear rationale for pick-
ing a single time path in the SOS that forces assumptions about
the particular structure of the system. Further, optimal paths are
often close to the SOS boundary, a fact that may be lost in the
narrative. The focus on SOSs is more appealing when there is so
much uncertainty about system structure and measurement that
optimization results have little value. For instance, consider the
cycling example again. Cyclists aim at staying on the right side
of the road (SOS) to avoid oncoming traffic. Casual cyclists may
stay far from the boundary between lanes. Cyclists in the Tour
de France may come very close to the boundary to gain time.
For a single rider with a single goal, this may not be a problem.
But if a single rider getting close to the SOS boundary may cause
problems for others, the group may want to negotiate where they
all wish to be within the SOS. This example shows how SOS
and optimization views may be complementary. Here we focus
on the SOS view as it is a more realistic goal in the context of
environmental management.

Our state space is defined by combinations of biomass and
effort levels and the SOS is based on an economic and a socio-
political constraint. The economic constraint is defined by a
minimum subsistence level. For clarity, we assume N identical
appropriators so that individual effort is simply e(t)/N . This
allows us to define the SOS based on aggregate effort and avoid
difficult distributional issues beyond the scope of this paper. Fol-
lowing the standard model (4) we assume constant market price
p and cost per unit effort, c, so that profit, π, is π= pH (x , e)−
ce . Defining minimum per unit effort profit as πmin, then the
economic constraint is px − c≥πmin from which we can define
the corresponding xmin as xmin =(c+πmin)/p (Fig. 4). Setting
πmin =0 corresponds to open access. Typically managers will set
πmin> 0.

The socio-political constraint is defined by the appropriators’
perception of having fair access to the resource (to meet subsis-
tence needs, traditional or spiritual access, etc.). If this minimum
fair effort, emin, is not realized, social and political unrest may

Appropriation Effort, e(t)0
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Fig. 4. The SOS for the natural resource management problem under con-
stant exploitation (long-run biomass will converge to the thick black curve
within the SOS). Note that when effort is dynamic, the SOS is typically
considerably smaller (compare with Fig. 6).
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Fig. 5. The role of different knowledge types in the decision-making
process.

ensue. The values of xmin and emin set the lower boundary for
the SOS analogous to the inner octagonal boundary in Fig. 2.
The upper boundary is determined by the interaction between
endogenous resource regeneration and appropriation pressure
which gives rise to a series of (regulated) bioeconomic equilibria.
If α> 0, there are two sets of interior equilibria, one stable and
the other unstable (thick and thin black curves in Fig. 4, respec-
tively). Part of the latter (highlighted in red in Fig. 4) defines the
most challenging portion of the SOS boundary to navigate.

Defining Knowledge Infrastructure. We conceptualize knowledge
infrastructure in terms of combinations of knowledge types and
knowledge mobilization strategies managers use. We identify
two broad manager types: incentive-based and regulatory. The
former influences the system by manipulating benefit flows to
appropriators via the cost of effort (e.g., a landing tax or annual
license fee) by which c is replaced with c+ a(t), where a(t)
is controlled by the manager. The latter focuses on controlling
H (x , e) directly [e.g., setting a quota (e.g., total allowable catch)
under a catch share system]. Each strategy involves different con-
figurations of knowledge types and, as a result, different costs.
Within these two broad types, there are then different rules for
choosing a(t) or H (x , e), depending on management goals and
available infrastructure. For example, imposing a fixed license
fee may require less infrastructure than a landing tax which, in
turn, requires less infrastructure than variance management (cf.
ref. 30). Four key knowledge types are as follows:

• Knowledge of the past based on time series (x (t), x (t −
1), x (t − 2), . . .) (K1, Fig. 5). This requires investment and
maintenance of monitoring infrastructure (sensors, people,
etc.) and is subject to measurement errors (33) that may cause
substantial difficulties in understanding ecosystem dynamics
(34). Methods exist to limit measurement error in time series
(34) but such errors inevitably persist.

• Knowledge of social and ecological dynamics F (x ), H (x , e)
(K2, Fig. 5). The structure of the interactions between ecosys-
tem dynamics, decision makers, and exogenous drivers is
known. Building and maintaining such knowledge requires
many experts, e.g., climate scientists, economists, biologists.
Representing social–ecological systems and their complexity
(so-called model representativeness) remains a critical issue
(35) that can be a significant barrier to producing useful models
(36). Measurement errors (calibration errors), biases, beliefs,
and values may affect how the system is perceived (37). In what
follows, we test the influence of poor representativeness of the
system (e.g., under/overestimation of K ).

• Knowledge of future events based on the properties of U
(K3, Fig. 5). Events are characterized from data and/or from

expertise (from climate scientists to mathematicians). K3 is
sensitive to the likelihood of extreme events because such
hazards (especially tail distributions) are difficult to model due
to nonlinearities and multiple interactions. By virtue of the fact
that they are rare, knowledge associated with extreme events
necessarily remains limited (38), leading to a natural ten-
dency to underestimate their frequency. Underestimating the
likelihood of extreme events can be catastrophic, while over-
estimating the likelihood of extreme events may yield needless
precaution. As with representativeness, mental representation
of likelihoods may evolve over time based on experience and
learning.

• Knowledge of appropriation levels based on self-reporting or
observed harvest (denoted K4). The latter requires significant
investment in monitoring. The former generates errors due to
inaccurate reporting.

Fig. 5 shows the “internal model” that policy actors use
to determine e(t). Red arrows indicate how each knowledge
type and its associated information flow enter into the itera-
tive decision-making process. The blue arrows indicate actual
actions: the effort level, e(t) and exogenous driver U (t) act on
the dynamics which, in turn, act on the present state x (t) to
generate an actual future system state, e.g., x (t +1). In each
iteration of the policy process, decision makers may use any com-
bination of knowledge types K1−K4 to choose their target e(t).
This iterative policy process produces a sequence of biomass
and effort values through time which, in turn, generates wel-
fare for society. Because each knowledge type involves significant
infrastructure investment, the cost of its use must be weighed
against the benefits it brings through welfare-improving choices
of e(t). This consideration, central in control systems engineer-
ing but seldom considered in environmental policy contexts, may
even suggest that it is best to deploy no knowledge infrastruc-
ture. Alternatively, decision makers may deploy K4 to ensure
that their target e(t) is actually realized. They may deploy K2 to
study social–ecological dynamics to improve their ability to pre-
dict x (t +1) given a measurement for x (t). Of course, the quality
of this prediction depends on the deployment of K1 to get good
measurements for x (t) and of K3 to gain understanding of U (t).

Analysis: From Knowledge to Action
The most general insight that emerges from our analysis is
that for incentive-based strategies, imperfect knowledge shrinks
the SOS. While this is consistent with our intuition, there are

Fig. 6. SOSs for different managers with perfect knowledge.
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Table 1. Robustness ranking of the SOS for different managers
with imperfect knowledge

Mobilized Ranking Ranking Ranking
Manager knowledge with PK with UE with OE

EI manager K1, K2 3 3 1
OE manager K1, K2, K3, K4 2 2 2
CS manager K1, K2 1 1 3

PK, perfect knowledge; UE/OE, under/overestimation.

counterintuitive cases in which particular combinations of imper-
fect knowledge and management strategy may enlarge the SOS.
For a variance reduction manager as in ref. 30, overestimation
of the stock (errors in K1) artificially increases the variance-
based indicator, exaggerating early warnings. For a maximum
sustainable yield (MSY) manager, overestimation of carrying
capacity artificially increases the biomass target, resulting in
more cautious strategies. In the case of management based on
a proportional tax, overestimation of e(t) leads to overestima-
tion of the tax which leads to a stronger reduction of e(t) than
conditions actually dictate. This enlarges the SOS. Finally, more
adaptive strategies are not always better than less adaptive strate-
gies (32). The moral of this story is that the interaction between
how and what knowledge is applied is quite complex.

To sharpen this point, consider the concrete case of the man-
aged fishery. Management seeks to keep biomass near MSY
(still a common management objective, e.g., the European Union
Common Fisheries Policy), denoted xMSY , while remaining
in the SOS. This requires maintaining x (t)> xmin and e(t)>
emin and avoiding crossing tipping points. We compare three
strategies:

i) An economic incentives (EI) manager who adapts the level
of a landing tax over time according to xMSY . Below xMSY ,
there is no tax (a(t)= 0), and above xMSY the tax is
maximum (a(t)= amax). This strategy is an integral-like
controller because tax changes effort through an integral
(Materials and Methods) which generates a delay.

ii) An optimal economic (OE) manager who has full access to
perfect knowledge to maximize the probability of sustain-
ing the fishery over a predefined time interval (i.e., meet
social–ecological constraints) through setting a(t). This is
also an integral-like controller which suffers from delays. The
OE manager’s job is much more demanding than the EI
manager’s is.

iii) A catch share (CS) manager who sets total harvest rather
than a tax to drive the system to xMSY . The CS manager
can change harvest directly from year to year. As such, the
controller is called proportional because H (t) at time t is
based directly on the proportional difference between x (t)
and xMSY in contrast to the OE and EI strategies where the
change in e(t) is based on this difference. This subtle differ-
ence between integral and proportional controls is important
in what follows.

We compare these strategies in terms of the size of their SOS
based on a 0.9 probability of complying with the social–ecological
constraints given exogenous driver U (t) in two different knowl-
edge situations. Fig. 6 compares these management strategies in
the case of perfect knowledge. The CS manager has the largest
SOS because her strategy behaves like a proportional controller
with more immediate impact over harvest levels with little delay.
This is in sharp contrast to the integral-like OE and EI man-
agers. The OE SOS is obviously bigger than the EI SOS in
this case because the OE uses more sophisticated knowledge
infrastructure. Note that the CS manager uses simpler knowl-
edge infrastructure (much simpler rules and less information).

Note that although the CS SOS is largest, it does not contain the
others. It cannot handle cases of low biomass that the others can.
This is due to the fact that when biomass gets low, the CS man-
ager reacts strongly and stops exploitation, causing the system to
cross the social constraint. The fact that no SOS contains all oth-
ers shows there is no panacea: There is no policy that works in
all cases.

The existence of an “unerring operating space” (UOS) is inter-
esting. The UOS corresponds to the intersection of all SOSs:
Whatever the policy, the system is unerringly safe. In our case,
it corresponds to an area around an attractor. The dead oper-
ating space (DOS), on the other hand, corresponds to the case
where there is no safe policy: Whatever the policy, the system
will not be safe. For example, a person aiming to lose weight
may use different strategies such as diet change, exercise, lipo-
suction, or gastric surgery that require very different knowledge
infrastructures and have very different impacts on other health
factors. Each one may enable a person to reach and maintain a
target weight interval (SOS) given sufficient time (UOS). How-
ever, reaching the SOS in a shorter time may not be possible for
any strategy (DOS).

In Fig. 6, there are two DOSs: the right DOS corresponds to
an ecological DOS whereas the left DOS corresponds to a social
DOS. It is important to identify UOSs and DOSs: The type of
management does not influence the final results and it is not nec-
essary to invest in mobilizing additional knowledge. On the other
hand, there are critical zones—where SOSs do not overlap—for
which it is necessary either to invest in more knowledge (e.g.,
move within the SOS of an OE manager) or to switch from EIs
to direct regulation.

The imperfect knowledge case (Table 1 and Materials and
Methods) assumes decisions are based on 50% over/underesti-
mation of carrying capacity K . For the OE manager, K changes
the shape of equilibrium curves and the locations of tipping
points, shrinking the OE SOS. The impact of K is quite differ-
ent for the MSY-based manager. The EI manager bases policy
on xMSY whereas the CS manager bases his policy on xMSY

and MSY. In the case of underestimation, both managers aim
at having a lower biomass, yielding a higher probability of cross-
ing tipping points. On the other hand, overestimation of K
yields a cautious strategy for the EI manager (he aims at hav-
ing a higher biomass) whereas an overestimation of K yields
strategies based on higher MSY for the CS manager, which is
catastrophic in terms of SOS. In summary, the largest SOS is
produced by the CS manager in the cases with perfect knowledge
and underestimation of K while the EI SOS is largest in the case
of overestimation of K . Table 1 shows the ranking of SOS size for
different managers. However, as mentioned above, it would not

Fig. 7. SOS of the different managers (during 100 time steps). The SOS is
described by the probability of sustainability higher than 0.9.
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be wise to select a management strategy based on the size of the
SOS alone.

Implications for Policy in the Anthropocene
Our objective in this article has been to explore the challenges
of mobilizing knowledge to manage exploited ecosystems. As
human impact on ecosystems increases, linkages between vari-
ous exploited ecosystems will become more important and the
need for management at the planetary scale will intensify. Man-
agement at the planetary scale will necessarily involve a very
diverse set of actors, aspirations, and beliefs. Such biophysical,
social, and economic complexity requires us to move from the
simple conceptualization of policy design in Fig. 1 to the one in
Fig. 2. We traced the literature on policy design with uncertainty
across these conceptualizations to set the stage for an approach
based on analyzing the impact of knowledge infrastructure mobi-
lization on SOSs rather than on more restrictive, probabilistic,
trajectory-based approaches. In a similar spirit to ref. 39, our
approach focuses on how knowledge (what kind and in what way)
is used.

Our analysis shows that the role of knowledge mobilization
on the sustainability of a resource system (i.e., the size of the
SOS) is quite subtle. Whether imperfect knowledge is problem-
atic or helpful depends on the context, so there are few general
principles that emerge. The few that do include the following:

• The importance of identifying UOSs and DOSs. In the UOS
and the DOS, what knowledge is mobilized and how it is
applied do not matter. There is no value in investing in gen-
erating additional knowledge or in implementing other policy
tools.

• The need to navigate a portfolio of SOSs. In the absence
of a SOS that contains all others, management should focus
not on staying within a particular SOS, but on navigat-
ing a portfolio of SOSs based on available knowledge and
policy tools.

• The need for infrastructure to deploy multiple combinations
of knowledge and policy types. Navigating from one SOS
to another may require investing in knowledge infrastructure
and/or changing policy tools on the fly. It is thus not a question
of “prices vs. quantities” but, rather, of how to dynamically nav-
igate among policy instruments as changing context dictates.
This navigation will require not only economic investment, but
also socio-political investment. Changing policy instruments
has nonmonetary cognitive costs that may be barriers to social
acceptance.

Although our analysis represents a small step, it highlights
a critical need for research on how knowledge infrastructure,
composed of systems of beliefs, perceptions, models, data, and
practical mechanisms to actualize this knowledge, interacts with
ecological dynamics to create SOSs. Such research will be critical
for policy design, at scale, in the Anthropocene.

Materials and Methods
Managing Exploited Populations. The standard bioeconomic model is x′(t) =
F(x)−H(x, e). F(x) represents the stock-dependent regenerative capacity
of the resource. The typical minimal biologically representative choice is
logistic growth: F(x) = rx(K− x). We add critical depensation and an exoge-
nous driver by defining F(x) = r(x−α)(K− x) + U(t). The harvest, H(x, e),
depends on the stock x(t) (e.g., tons) and effort e(t) (e.g., vessel days per
year) according to the standard model, H(x, e) = qex. The biomass dynamics
follow

dx

dt
= r(K− x)(x−α)− qex + U(t). [1]

The parameters are intrinsic growth, r = 0.25; carrying capacity, K = 4;
sigmoid predation consumption coefficient, α= 0.25; and “catchability”
(technology), q, which we normalize to 1. U(t) is a white noise process with
a SD equal to 0.075.

Incentive-Based Management.
Effort dynamics. We consider EI management based on an adaptive tax.
The effort dynamics are

de

dt
= βe(px− c− a(t))(1− e) [2]

with β= 0.05, c = 1.5, p = 4.5. The term a(t)∈ [0, amax] is the control with
amax = 4.5. The term (1− e) is used to set an upper limit on the effort equal
to 1. We set the minimum effort emin to 0.05 and πmin to 0.2. In what fol-
lows, 1,000 simulations were used for assessing the probability of complying
with the socio-ecological constraints. The time horizon T is equal to 100
time steps.
The EI manager. The EI manager adapts regulation a(t) according to
biomass and the MSY,

• if x(t) < xMSY , a(t) = amax; and
• if x(t) > xMSY , a(t) = 0.

Here, xMSY = 2.125.
The OE manager. The OE manager adapts the control a(t) based on time
series to maximize the probability of sustainability. This problem can be
solved using dynamic programming. Consider a time horizon of T and define
Ps(T , X) as the probability of complying with the social–ecological constraints
at T , with X being the state vector of the ecosystem (i.e., x and e). This initial
probability is equal to 1 if state X complies with the socio-ecological con-
straints and is equal to 0 elsewhere. This means that if x< xmin or e< emin, the
system is considered failed. Then we use the following backward technique
(dynamic programming) from t = T − 1 to t = 0:

∀t∈ [0, T − 1], Ps(t, X) = max
a(t)

∑
y

P(g(X, a(t)) = Y)Ps(t + 1, Y). [3]

The g function corresponds to the right term of Eqs. 1 and 2 (transition from
one state to another). Finally we arrive at the strategy a(0), a(1), . . . , a(T)
that maximizes the probability Ps(0, X).

Regulatory Management. We consider a CS manager who, instead of con-
trolling effort through a tax, controls total allowable catch by fixing the
yield H(t) with the goal of driving H(t) to the MSY. H(t) is set based a on
proportional controller:

H(t) = MSY + γ
x(t− 1)− xMSY

xMSY
. [4]

In terms of “proportional” controller,

• “MSY” corresponds to the “controller output with zero error”;

•
x(t− 1)− xMSY

xMSY
corresponds to the instantaneous process error at time

t; and
• γ corresponds to the proportional gain and is equal to 1.5 here.

Effort e(t) is then estimated with this yield objective and the estimation
of the biomass x(t) via the equation e(t) = H(t)/x(t).

Imperfect Knowledge. We explore how biases in knowledge assessment
impact the system when managers under- and overestimate K by 50%. The
SOSs are shown in Fig. 7 in support of Table 1.
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